

Q1.
a) Using examples examine the properties of the mean
b) Calculate the mode, median and mean of the following data showing the number of meals per day consumed by children under four years: $4,4,5,7,4,3,3,2$
marks)
c) Describe the assumptions which are to be met by data of two variables X and Y , being correlated for Pearson Correlation Coefficient $\left(r_{x y}\right)$ to be meaningful
d) Explain why the standard deviation is the most widely used and preferred measure of variability marks)

SECTION B: ANSWER ANY THREE QUESTIONS

Q2. Seven students in a certain university scored: 5, 6, 7, 8, 9, 10 and 11 in a certain psychological test

Compute:
a) Range
b) mean
c) absolute mean deviation
d) Standard deviation
e) Evaluate would happen to standard deviation if you add 3 to every score in the distribution
f) Explain would happen to variance if you multiply every score in the distribution by 2
(15marks)

Q3.
a) Giving relevant examples explain the levels (scales) of measurement in statistics marks)
b) The weight of five psychology students in kilograms is; student A 90 student B 40 Kg , student C $60 \mathrm{Kg}, \mathrm{D} 65 \mathrm{Kg}$ and student D 50 Kg . Present their weight in a pie chart and make interpretations

Q4.The table below shows the weight of some people who attended a healthy facility in a certain week

Weight in Kg	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$
Frequency	8	12	18	20	15	4	3

a) Calculate the mean weight
b) Calculate the median weight

Q5. Suppose the following were scores of a small group in two psychological tests, Test A and Test B . Taking Test A as variable X and Test B as variable Y .
i.

Compute

NAMES	TEST A (X)	TEST B (Y)
Mark	47	42
Mercy	46	47
Dan	27	22
Lucy	8	7
Janis	8	12

Spearman rank correlation coefficient (rho), for these two tests and interpret the results (7 marks)
Compute the Pearson product moment correlation coefficient and interpret the results
(8 marks
END

