

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157

00200 Nairobi - KENYA
Telephone: 891601-6
Ext 1022/23/25
SEPTEMBER -DECEMBER 2021

FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS
REGULAR PROGRAMME
MAT 364: DESIGN AND ANALYSIS OF SAMPLE SURVEY
Date: DECEMBER 2021 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions

Q1.
a) Define the following terms
i) Sample survey
ii) Estimator
iii) Bias
b) State and explain the properties of a BEST estimator.
(7 Marks)
c) State and describe the four types of non-sampling error.
d) From a population of size 5, calculate the number of samples of size 2 that can be drawn using
i) SRSWR.
ii) SRSWOR.
e) The depth Y of the roots of plants in a field is uniformly distributed between 5 cm and 8 cm with the probability density function $f(y)=\frac{1}{3}, \forall 7<y<10$. Estimate the average length of roots of the plants with an accuracy of relative standard error of 2%. What is the required minimum with replacement sample size n? (4 Marks)
f) Suppose a population consists of $N=4$ units. The variable Y_{i} takes values $1,2,3,4$. Calculate:
i) The populations mean square error.
ii) population variance

Q2. The following data shows daily yield of two types of cows in litres per day.

S.No	Type	Yield
1	A	43
2	B	49
3	A	47
4	A	42
5	B	52
6	A	49
7	A	44
8	B	54
9	A	48
10	A	45
11	A	47
12	A	52
13	B	50
14	A	49
15	B	63
16	A	44
17	A	46
18	B	56
19	A	50
20	A	48
21	B	50

a) If we select a SRSWOR sample of 4 units, find the variance of the estimator of population mean.
b) If we stratify the population on the basis of type, and then select 2 units from each type, find the variance of the estimator of mean in stratified sampling. (Let type B take stratum 1 and type A take stratum2).
(12 Marks)

Q3. Consider a population consisting of the following six units.

Unit	A	B	C	D	E	F
Value	718	912	1014	1113	1110	615

Consider the following sampling plan.

Sample number	samples	Probability
1	$A C E$	$1 / 9$
2	$A C F$	$1 / 9$
3	$A D E$	$1 / 9$
4	$A D F$	$1 / 9$
5	$B C E$	$1 / 9$
6	$B C F$	$1 / 9$
7	$B D E$	$1 / 9$
8	$B D F$	$1 / 9$
9	$C D F$	$1 / 9$

Use the above tables to compute the following.
a) $E\left(\bar{y}_{t}\right)$
b) $B\left(\bar{y}_{t}\right)$
c) $\operatorname{MSE}\left(\bar{y}_{t}\right)$
(16 Marks)
(2 Marks)
(2 Marks)

Q4. An experienced farmer makes an eye estimate of the weight of peaches x_{i} on each tree in an orchard of $N=200$ trees with population mean $\bar{X}=58$. The peaches are picked and weighed on a simple random sample of 10 trees, with the following results:

Tree	1	2	3	4	5	6	7	8	9	10	Total
Actual wt, y_{i}	61	42	50	58	67	45	39	57	71	53	543
Est. wt, x_{i}	59	47	52	60	67	48	44	58	76	58	569

Apply the ratio method of estimation to estimate:
a) The average actual weight.
(4 Marks)
b) An estimator of the mean square error of the ratio estimator.
(13 Marks)
c) Hence deduce the 95% confidence interval.

Q5. A company selected a SRSWOR sample of six varieties of a product out of 70 varieties available in the market as shown below.

Variety	A	B	C	D	E	F
No. of items	855	940	90	46	20	16

a) Estimate the average number of items in each variety.
b) Construct a 95% confidence interval for the average number of items in each variety.
(12 Marks)
c) Estimate the total number of items in the market.
d) Construct a 95% confidence interval for the total number of items in the market.
(3 Marks)
END

