

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

(3 marks)

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

REGULAR PROGRAMME

MAT 365: TESTS OF HYPOTHESES II

Date: DECEMBER 2021	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and a	ny TWO Questions

Q1. a) (i) Define non-parametric test

(ii) What are the advantages and disadvantages of non-parametric tests? (4 marks)b) According to the genetic theory, the number of colour strain pink, white and blue in a certain flower should appear in the ratio 3:2:5. For 100 plants, the results were as follows:

Colour	Pink	White	Blue
Number of plants	24	14	62

Perform the χ^2 - test at 5% level of significance to investigate the validity of the theory (6)

marks)

c) The following data shows the people's preference for red or white wine of 1000 randomly chosen individual form Nairobi East and Nairobi West areas

		Preferenc	es	
		Red	White	
Area	East	238	158	
	West	304	300	
Test wheth	er the preferei	nce for red or w	white wine lives at $\alpha = 2.5\%$.	(6 marks)
	lescribe the si			(5 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

ISO 9001:2015 Certified by the Kenya Bureau of Standards

e) The following is an arrangement of men M and women W, lined up, at the over 60 years old entrance, to purchase tickets for a Sofa Paka versus Kong'lo match MMMMWWWMMMMMMMWWWWWW

Test the randomness of the arrangement at the 5% level of significance. (6 marks)

Q2. a) Given a set of paired observations $(x_i y_i), i = 1, 2, K, n$, show that the rank correlation

$$=\frac{6\sum_{i=1}^{n}d_{i}^{2}}{\frac{1}{1-2}}$$

 $r_s = \frac{1}{n(n^2 - 1)}$ where d_i is the difference between ranks assigned to x_i coefficient is given by and y_i . (10 marks)

b) The following figures released by the Federal Trade Commission, show the milligrams of tar and nicotine found in 10 bounds of cigarettes.

		Cigarettes Brand	Tar content	Nicotine content	
•		Viceroy	14	0.9	~ 1 1
i)	the	Marlboro	16	1.1	Calculate rank
		Chesterfield	28	1.6	correlation coefficient
	to	Kool	17	1.3	measure the degree of
		Kent	15	1.0	relationship
	tar	Raleigh	13	0.8	between the and nicotine
		Old Gold	24	1.5	content in cigarettes
		Philip Morris	25	1.4	orgarettes
		Oasis	18	1.2	(6
ii)		Players	31	2.0	marks) Stating your
11)	1 (1	1		· · · · · · · · · · · · · · · · · · ·	

hypotheses and using a 5% level of significance, test the significance of your value. (4 marks)

 a) The students at a medical seminar on smoking comprised of 4 smokers and 6 non-smokers. Their pulse rates, in beats per minute, were measured with the following results. Non-smokers 60 63 68 78 91 94
Smoker 64 76 92 102

Use Kolmogorov-Smirnov test to test whether the two samples have different distribution functions. (8 marks)

b) The weights (in grams) of species of mice from a certain area were found to be:

106 90 95 80 99 119 83 100 88 100 70

It is thought that the median of the population form which this sample is taken is 100. Test, at the 10% level, the following hypothesis

i)	H_0 : median	= 100					
	H_1 : median	< 100					
ii)	H_0 : median	= 100					
	H_1 : median	± 100					(12marks)
a) The dice is	rolled 60 time	s. The r	esults	are sho	wn belo	w:	
Score	1	2	3	4	5	6	
Frequ	ency 10	11	9	6	10	14	

Test whether the dice is fair at 5% level of significance

b) The PASS leader who spends a lot of time wearing high heels counts the number of kilometers she can walk in two different pair of shows before her feet get sore. Random

samples of $n_1=7$ days when wearing pair A and $n_2=9$ days when wearing pair B are taken. The table shows the number of kilometers she walked before her feet started to hurt.

Kilometers walked

2.

Pair A 1.5	2.3	2.8	1.9	2.4	2.1		
Pair B 1.1	2.2	1.8	2.3	0.9	1.4	1.7	1.6

Using the Wilcoxon Rank Sum test at 5% level of significance, test whether there is a difference in the distance she can walk in the two different pairs of shoes. (10 marks)

Page 3

(10marks)

3. a) Define a contingency table?

(2 marks)

b) Consider an $r \times s$ contingency table in which the $(i-j)^m$ cell frequency is n_{ij} . Show that to test the null hypothesis of homogeneity we can use the statistics

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(n_{ij} - \frac{n_{i*}n_{\bullet j}}{n}\right)^{2}}{\left(\frac{n_{i*}n_{\bullet j}}{n}\right)} - \frac{1}{2}$$

Where n_{i} and n_{i} are the marginal total of i - th row and j - th column respectively.

(8 marks)

c) 300 people of different ages were interviewed and asked which genre of books they mostly read (fiction/non-fiction/science fiction). The results are as follows:

		Book type					
	Ś	Fiction	Non- fiction	Science fiction	Total		
Age	0-25 years	23	16	41	80		
	26-50 years	54	38	38	130		
	51+ years	29	43	18	90		
Total		100	97	97	300		

Test at the 5% significance level, determine whether the type of book is independent of age. (10 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 4

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

ISO 9001:2015 Certified by the Kenya Bureau of Standards

END