

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

Ext 1022/23/25

SEPTEMBER -DECEMBER 2021

_ -----

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

REGULAR PROGRAMME

MAT 307: REAL ANALYSIS III

Date: DECEMBER 2021 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions

Q1.

- a. Show that if f is increasing on [a,b], then f is of bounded variation on [a,b] and V(f,[a,b])=f(b)-f(a). [5marks]
- b. Prove that if F is differentiable with F'=f continuous; then if g is integrable

$$\int_{1}^{\infty} g(u) dF(u) = \int_{1}^{\infty} g(u) f(u) du$$
 [5marks]

- c. Prove that a sequence (f_n) of bounded functions on $A \subset R$ converges uniformly on A to $f : f | f_n f | \lor \to 0$. [5marks]
- d. State the root test outlining clearly its condition for absolute convergence and divergence [5marks]
- e. Test the convergence of the following

i.
$$\sum_{0}^{\infty} \frac{2^{2^{n}} 3^{n}}{10^{n}}$$

[5marks]

ii.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

[5marks]

Q2.

a. State the fundamental theorem of calculus (First Form) and prove it

[9marks]

b. Evaluate the following by fundamental theorem

i.
$$G(x) = \arctan x \ \forall x \in [a, b]$$

ii. $A(x) = |x| \ \forall x \in [-10, 10]$ [3marks]
c. Show that $\left(\frac{1}{n}\right)$ is a Cauchy sequence [4marks]

Q3.

a. Suppose γ is a circle centered about the origin, oriented counter-clockwise. Then,

$$\int_{0}^{\pi} z^{-1} dz = 2\pi i.$$

b. Show that the function f defined by

$$f(x) =$$

is not of bounded variation

[10marks]

[10marks]

Q4.

a. Determine the radius and interval of convergence of the series [5marks]

$$\sum_{n=0}^{\infty} \frac{(x-4)^n}{5^n}$$

- b. Use the fourth Maclaurin polynomial to approximate ln (1.1) [7marks]
- c. Show that if $f \in R[a,b]$ then the value of the integral is uniquely determined [8marks]