

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

REGULAR PROGRAMME

MAT 308: NUMBER THEORY

Date: DECEMBER 2021 Duration: 2 Hou	Irs
INSTRUCTIONS: Answer Question ONE and any TWO Questions	
Q1.	
a. Define a prime number.	
b. Find the <i>lcm</i> (272,1479).	(2 marks)
	(3 marks)
c. Find the integers (x, y) such that $gcd(a,b)=ax+by$ for the pair (39)	,
	(3 marks)
d. Find three different Pythagoras triples of the form $(16, y, z)$.	(3 marks)
e. Find all solutions in positive integer of the Diophantine equation x	· · · ·
	4 marks
f. Find all primitive Pythagoras triples (a, b, c) with $z \le 40$.	(,
	(3 marks)
g. Use the Euclidean algorithm to obtain integers x and y satisfying $gcd(56,72)=56x+7y$.	
\mathbf{S}	(3 marks)
h. Express $gcd(6,10,15)$ as a linear combination of its element integer	
	(3 marks)
i. Find <i>gcd</i> (0,0,1001).	, ,
	(3 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

j. Find three naturally relative prime integers from among the integers $(66,105,42,70,\wedge 165)$.

(3 marks)

(5 marks)

(5 marks)

Q2.

- a. Find all the primes less than 100 using the sieve of Eratosthenes.
- Using Fermat's little theorem, find the least positive residue of 2¹⁰⁰⁰⁰⁰⁰ modulo 17.
- c. Find the prime factorization of the integers (1234,10140,36000).
- (5 marks)
 d. Show that if k is a positive integer, then 3k+2 and 5k+3 are relatively prime integers greater than 1.

Q3.

a. If k > 0 then gcd(ka, kb) = k gcd(a, b). Prove. b. For positive integers a and b, gcd(a, b)lcm(a, b) = ab. Prove. (5 marks) c. If gcd(a,b)=d, then $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. Prove that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime. (5 marks) d. If $a \lor b$ and $b \neq 0$, then $ia \lor i \lor b \lor i$. (5 marks)

Q4.

a. Let m=5 and n=2, so that (m,n)=1, $m \neq n \pmod{2}$ and m>n. Find the primitive Pythagorean triple.

(5 marks)

- b. Generate a table of primitive Pythagorean triples with $m \le 6$.
 - (5 marks)
- c. If (*a*, *b*, *c*) is a primitive Pythagorean triple. Illustrate that *a* and *b* are of opposite parity.

(10 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

a. Using Wilson's theorem, find the least positive residue of $8 \times 9 \times 10 \times 11 \times 12 \times 13$ modulo 7.

(5 marks)

b. Periodical cicadas are insects with very long larva periods and brief adult lives. For each species of periodical cicadas with larva period of 17 years, there is a similar species with a larva period of 13 years. If both, the 17year and 13-year old species emerged in a particular location in 1900, when will they both emerge in that location?

(5 marks)

c. If $a \lor b$ and $a \lor c$, then $a \lor (bx+cy)$ for arbitrary integers *x* and *y*.

(5 marks)

d. Show that if (a, b, c) is a Pythagorean triple, then *a* or *b* is divisible by 3.

(5 marks)

END

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Q5.