

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

Ext 1022/23/25

SEPTEMBER –DECEMBER 2021

_ -----

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

REGULAR PROGRAMME

MAT 333: DIFFERENTIAL GEOMETRY

Date: DECEMBER 2021 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions

Q1. a) If $\vec{A} = x z^3 i - 2x^2 yzj + 2y z^4 k$, find $\nabla \times \vec{A}$ (or curl $\vec{A} \vec{\iota}$ at point (1,-1,1).

(3 marks)

- b) A particle moves along a curve whose parametric equations are $x=e^{-t}$, $y=2\cos 3t$, $z=3\sin 3t$, where t is the time.
 - i) Determine its velocity and acceleration at any time t. (3 marks)
 - ii) Find the magnitudes of the velocity and acceleration at t=0.

(3 marks)

c. Prove that

$$i)\nabla^2\left(\frac{1}{r}\right) = 0$$

(4 marks)

ii) Curl grad $\phi = 0$

(3 marks)

iii) \vec{l} curl $\vec{A} = 0$

(3 marks)

Where symbols have their usual meaning.

d. Find the total work done in moving a particle in a force field given by $\vec{F} = 3xyi - 5zj + 10xk$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t=1 to t=2. (5 marks)

e. i) If $\vec{A} = x^2 z i - 2 y^3 z^2 j + x y^2 z k$, find $(\vec{b} \vec{A})$ at the point (1,-1,1). (3 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

- ii) Show that $\nabla \cdot \nabla \phi = \nabla^2 \phi$, where $\phi = 2x^3 y^2 z^4$. (3 marks)
- Q2. i) Find $\nabla \phi$ if $\phi = \log |\vec{r}|$ (5 marks)
 - ii) If $\vec{v} = \vec{w} \times \vec{r}$ prove $\vec{w} = \frac{1}{2} curl \vec{v}$ where \vec{w} is a constant vector. (4 marks)
- iii) Let $\vec{F} = 2xzi xj + y^2k$, evaluate $\iiint \vec{F} \, dv$ where v is the region bounded by surfaces

$$x=0, x=2, y=0, y=6, z=x^2, z=4.$$
 (10 marks)

Q3. a) i) Find a unit tangent vector to any point on the curve $x=t^2+1, y=4t-3, z=2t^2-6t$

(6 marks)

- ii) Determine the unit tangent vector at the point t=2. (2 marks)
- b) Evaluate $\int \vec{A} \times \frac{d^2 \vec{A}}{dt^2} dt$. (2 marks)
- c) If $\vec{A} = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int_c \vec{A} \cdot d\vec{r}$ from (0,0,0) to (1,1,1) along the following path x = t, $y = t^2$, $z = t^3$ (10 marks)
- Q4. a) Given the space curve x=t, $y=t^2$, $z=\frac{2}{3}t^3$. Find
 - i) The curvature k
 - ii) Radius of the curvature

(10 marks)

b) Express the divergence theorem in words and write it in rectangular form.

(5 marks)

c) Find a unit normal to the surface $x^2y+2xy=4$ at the point (2,-2,3).

(5 marks)

Q5. a) Prove that

i)
$$\frac{d\hat{T}}{ds} = k \hat{N}$$

ii)
$$\frac{d\hat{B}}{ds} = -\tau \hat{N}$$

iii)
$$\frac{d\hat{N}}{ds} = -\tau \hat{B} - k \hat{T}$$
 (10 marks)

- b) i) Show that $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$ is a conservative force field.
 - ii) Find a scalar potential
 - iii) Find the work done in moving an object in this field from (1, -2, 1) to (3, 1,

(10 marks)

END