

Q1. a). Find the slope of the tangent to $x^{2}+y^{3}=5$ at the point when $x=2$. (4marks)
b). Air is being pumped into a spherical balloon at a rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$.

Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20 cm .
c). Find $\frac{d y}{d x}$, given $y=\frac{u^{2}-1}{u^{2}+1}$ and $u=\sqrt[3]{x^{2}+2}$.
(4marks)
d). Find from first principle, the derivative of the function $y=\sqrt[3]{x}$. (4marks)
e). A point moves along the curve $y=x^{3}-3 x+5$ so that $x=\frac{1}{2} \sqrt{t}+3$, where ${ }^{t}$ is time. At what rate is ${ }^{y}$ changing when $t=4$.
(3marks)
f). Use Newton's-Raphson method to find the root of the given equation, accurate to six decimal places, that lies in the given interval
$2 x^{2}+5=e^{x}$ in $[3,4]$
g). (i) State Mean Value Theorem.
(ii) If $f(x)=4 x^{3}-8 x^{2}+7 x-2$, determine whether or not ${ }^{f(x)}$ satisfies the hypotheses of the Mean Value Theorem on ${ }^{[2,5]}$ and if it does, find the values in ${ }^{[2,5]}$ which satisfy the conclusions of the theorem.
(4marks)
h). Show that the ellipse $x^{2}+2 y^{2}=2$ and the hyperbola $2 x^{2}-2 y^{2}=1$ intersect at right angles.
(2marks)

Q2. a) (i) Find from first principles, the derivative of ${ }^{y=\tan (2 x\rangle}$.
(ii) Prove that the lines tangent to the curves $5 y-2 x+y^{3}-x^{2} y=0$ and
$2 y+5 x+x^{4}-x^{3} y^{2}=0$ at the origin intersect at right angles.
b) The production costs, in dollars, per week of producing ${ }^{x}$ widgets is given by, $C(x)=4000-32 x+0.08 x^{2}+0.00006 x$
and the demand function for the widgets is given by,
$p(x)=250+0.02 x-0.001 x^{2}$
Find:
(i) Marginal Cost.
(3marks)
(ii) Marginal revenue. (2marks)
(iii) Marginal profit.
when $x=200$ and $x=400$? what do these numbers tell you about the cost, revenue and profit?.

Q3. (a) Find and classify the stationary points of $y=x e$. Sketch the graph. (5marks)
(b) Water is pouring into a leaky tank at the rate of $10 m^{3}$ per hour. The tank is a cone with vortex down $9 m$ in depth and $3 m$ in radius at the top. Show that when
the depth is ${ }^{h}$ meters the volume of water in the tank is ${ }^{V}=\frac{1}{27} \pi h^{3}$. The surface of the water in the tank is rising at the rate of 20 cm per hour when the depth is 6 m . How fast is the water leaking out at that time?
(c) Using implicit differentiation, derive an expression for $\frac{d y}{d x}$ where x and y are defined by the solution to the expression $y^{2}-x^{3}=2 x e^{y}$.
(3marks)
(d) Find the Taylor series expansion for ${ }^{y=\cos \langle x\rangle}$ about $x=0$ for terms up to $O\left(x^{7}\right)$ then write down the general formula for its series expansion.
(6marks)
Q4.a) Find the derivatives of:

$$
\begin{equation*}
y=4 x^{5} \sin (x) e^{x} \tag{i}
\end{equation*}
$$

(3marks)
(ii)

$$
\frac{x-y}{x+y}=\frac{x^{2}}{y}+1, \quad x \neq y, \quad y \neq 0 .
$$

(4marks)
(b) A management company is planning to build a new apartment complex.

They know that if the complex contains ${ }^{x}$ apartments the maintenance costs for the building, landscaping etc. will be,
$C(x)=4000+14 x-0.04 x^{2}$,
the land they have purchased can hold a complex of at most ${ }^{500}$ apartments. How many apartments should the complex have in order to minimize the maintenance costs?
(5marks)
(c) Find from first principle, the derivative of $\quad y=\sqrt{x}+\frac{1}{\sqrt{x}}$.
(8marks)
Q5. (a) For the equation of a circle of radius a and center ${ }^{(0,0)}$, that is, $x^{2}+y^{2}=a^{2}$. Show that,

$$
y^{n}=-\frac{a^{2}}{y^{3}}
$$

(b). i). Find the Taylor polynomials of up to $O\left(x^{5}\right)$ to approximate $f(x)=\frac{1}{1-x}$ near $x=0$.
(ii). In particular, use the expansion found in $\mathbf{b}(\mathbf{i})$ above to find the accuracy of the Taylor polynomial approximations of
$f(x)=\frac{1}{1-x}$, at $x=0.1$ to 5 decimal places.
(c). Find the derivatives of ${ }^{y}$ with respect to ${ }^{x}$ if:
(i). $\cos \left|x^{2}+2 y\right|+x e^{1^{2}}=1$.
(4marks)
(ii). $\tan \left(x^{2} y^{4}\right)=3 x+y^{2}$.
END

