

Q1.
a) By definition, differentiate the random variables, $T_{x y} \wedge T_{\overline{x y}}$

4marks
b) Explain the mortality of AM92 (ultimate) for both lives, calculate the following
i. $q_{66: 65}$ 4marks
ii. $\mu_{38: 30}$ 3marks
c) Simplify the sum ${ }_{n} q_{x y}^{1}+{ }_{n} q_{x y}^{1}$, and use the result to prove ${ }_{n}^{\square} q_{x x}^{1}=\frac{1}{2}{ }_{n}{ }_{n} q_{x x}^{\square} \quad$ 4marks
d) A joint life assurance contract provides death benefit of Kshs. 100,000 payable immediately on the second death of the two lives, a male life currently aged 60 and a female life currently aged 55 exact.

Calculate the expected present value of this contract.

Basis: Mortality PMA92C20 (male life), PFA92C20 (female life)

Interest: 4\% per annum

Expenses: Nil
5marks
e) Calculate $5 \vee 3^{q^{10}: 100}$

Basis: Mortality AM92
f) Why would an insurance firm keep reserves for joint-life status policies

5 marks

Q2.
a) In a mortality table known to follow Makeham's law you are given that $\mathrm{A}=0.03, c^{10}=5$

$$
\text { and } e_{30: 60}^{0}=17 \text { Calculate } q_{3050}
$$

10marks
b) Given that $\mu_{x}=\frac{1}{100-x}$ For $0 \leq x \leq 100$, calculate the value of 10marks

Q3.
a) Marge and Homer, both aged 55 exact, take out a policy that provides a lump sum of $£ 50,000$ payable immediately on the second death. Premiums are payable annually in advance while at least one of Marge and Homer is alive. Calculate the annual premium for the policy assuming PA92C20 mortality, 4\% pa interest, and no expenses.

8marks

b) The random variable $T_{x y}$ Represents the time to failure of the joint life status ($x y$). (x) is subject to a constant force of mortality of 0.01 and (y) is subject to a constant force of mortality of 0.02 . Calculate the value of $E(T i i x y) i$ assuming that (x) and (y) are independent with respect to mortality.

8 marks
c) Define the following terms:
i. Contingent assurances

2marks
ii. Reversionary annuities

2marks

Q4.
a)
i. Express fully in words:

4marks
ii. Express $\overline{a_{x y}} \cdot n$ as the expected value of random variables and hence show that 4marks
b) Jim and Dot, both aged 60, buy an annuity payable monthly in advance for at most 20 years, which is payable while at least one of them is alive. Calculate the expected present value of the annuity assuming 4\% pa interest and PA92C20 mortality.
a) The following assurance functions represent the factors used for valuing the benefits from annual premium insurance contracts:
i. $\quad A_{x y}^{1}$
ii. $\quad A_{x y}^{2}$

Specify the appropriate annuity factor to be used in valuing premiums
b) A life insurance company issues a special endowment assurance policy for a 25 year term to two lives (x) and (y) under the policy, sum assured of 100,000 is paid immediately on the death of the second life within the 25 year term. At the end of the $25 y$ years a sum assured of 50,000 is paid to each survivor.
Calculate the annual premium paid continuously under this policy assuming this is paid throughout the term or until the second death if death occurs earlier.

Basis:
Mortality: life $\mathrm{x}, \mu_{x}=0.02$ for all x
Life $\mathrm{y}, \mu_{y}=0.03$ for all y
Force of interest: 5\% p.a
Expenses: Nil
14marks
END

